Compressed videos often exhibit visually annoying artifacts, known as Perceivable Encoding Artifacts (PEAs), which dramatically degrade video visual quality. Subjective and objective measures capable of identifying and quantifying various types of PEAs are critical in improving visual quality. In this paper, we investigate the influence of four spatial PEAs (i.e. blurring, blocking, bleeding, and ringing) and two temporal PEAs (i.e. flickering and floating) on video quality. For spatial artifacts, we propose a visual saliency model with a low computational cost and higher consistency with human visual perception. In terms of temporal artifacts, self-attention based TimeSFormer is improved to detect temporal artifacts. Based on the six types of PEAs, a quality metric called Saliency-Aware Spatio-Temporal Artifacts Measurement (SSTAM) is proposed. Experimental results demonstrate that the proposed method outperforms state-of-the-art metrics. We believe that SSTAM will be beneficial for optimizing video coding techniques.
translated by 谷歌翻译
Label noise is ubiquitous in various machine learning scenarios such as self-labeling with model predictions and erroneous data annotation. Many existing approaches are based on heuristics such as sample losses, which might not be flexible enough to achieve optimal solutions. Meta learning based methods address this issue by learning a data selection function, but can be hard to optimize. In light of these pros and cons, we propose Selection-Enhanced Noisy label Training (SENT) that does not rely on meta learning while having the flexibility of being data-driven. SENT transfers the noise distribution to a clean set and trains a model to distinguish noisy labels from clean ones using model-based features. Empirically, on a wide range of tasks including text classification and speech recognition, SENT improves performance over strong baselines under the settings of self-training and label corruption.
translated by 谷歌翻译
Benefiting from its single-photon sensitivity, single-photon avalanche diode (SPAD) array has been widely applied in various fields such as fluorescence lifetime imaging and quantum computing. However, large-scale high-fidelity single-photon imaging remains a big challenge, due to the complex hardware manufacture craft and heavy noise disturbance of SPAD arrays. In this work, we introduce deep learning into SPAD, enabling super-resolution single-photon imaging over an order of magnitude, with significant enhancement of bit depth and imaging quality. We first studied the complex photon flow model of SPAD electronics to accurately characterize multiple physical noise sources, and collected a real SPAD image dataset (64 $\times$ 32 pixels, 90 scenes, 10 different bit depth, 3 different illumination flux, 2790 images in total) to calibrate noise model parameters. With this real-world physical noise model, we for the first time synthesized a large-scale realistic single-photon image dataset (image pairs of 5 different resolutions with maximum megapixels, 17250 scenes, 10 different bit depth, 3 different illumination flux, 2.6 million images in total) for subsequent network training. To tackle the severe super-resolution challenge of SPAD inputs with low bit depth, low resolution, and heavy noise, we further built a deep transformer network with a content-adaptive self-attention mechanism and gated fusion modules, which can dig global contextual features to remove multi-source noise and extract full-frequency details. We applied the technique on a series of experiments including macroscopic and microscopic imaging, microfluidic inspection, and Fourier ptychography. The experiments validate the technique's state-of-the-art super-resolution SPAD imaging performance, with more than 5 dB superiority on PSNR compared to the existing methods.
translated by 谷歌翻译
Task transfer learning is a popular technique in image processing applications that uses pre-trained models to reduce the supervision cost of related tasks. An important question is to determine task transferability, i.e. given a common input domain, estimating to what extent representations learned from a source task can help in learning a target task. Typically, transferability is either measured experimentally or inferred through task relatedness, which is often defined without a clear operational meaning. In this paper, we present a novel metric, H-score, an easily-computable evaluation function that estimates the performance of transferred representations from one task to another in classification problems using statistical and information theoretic principles. Experiments on real image data show that our metric is not only consistent with the empirical transferability measurement, but also useful to practitioners in applications such as source model selection and task transfer curriculum learning.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Recent research has reported a performance degradation in self-supervised contrastive learning for specially designed efficient networks, such as MobileNet and EfficientNet. A common practice to address this problem is to introduce a pretrained contrastive teacher model and train the lightweight networks with distillation signals generated by the teacher. However, it is time and resource consuming to pretrain a teacher model when it is not available. In this work, we aim to establish a stronger baseline for lightweight contrastive models without using a pretrained teacher model. Specifically, we show that the optimal recipe for efficient models is different from that of larger models, and using the same training settings as ResNet50, as previous research does, is inappropriate. Additionally, we observe a common issu e in contrastive learning where either the positive or negative views can be noisy, and propose a smoothed version of InfoNCE loss to alleviate this problem. As a result, we successfully improve the linear evaluation results from 36.3\% to 62.3\% for MobileNet-V3-Large and from 42.2\% to 65.8\% for EfficientNet-B0 on ImageNet, closing the accuracy gap to ResNet50 with $5\times$ fewer parameters. We hope our research will facilitate the usage of lightweight contrastive models.
translated by 谷歌翻译
Harvesting question-answer (QA) pairs from customer service chatlog in the wild is an efficient way to enrich the knowledge base for customer service chatbots in the cold start or continuous integration scenarios. Prior work attempts to obtain 1-to-1 QA pairs from growing customer service chatlog, which fails to integrate the incomplete utterances from the dialog context for composite QA retrieval. In this paper, we propose N-to-N QA extraction task in which the derived questions and corresponding answers might be separated across different utterances. We introduce a suite of generative/discriminative tagging based methods with end-to-end and two-stage variants that perform well on 5 customer service datasets and for the first time setup a benchmark for N-to-N DialogQAE with utterance and session level evaluation metrics. With a deep dive into extracted QA pairs, we find that the relations between and inside the QA pairs can be indicators to analyze the dialogue structure, e.g. information seeking, clarification, barge-in and elaboration. We also show that the proposed models can adapt to different domains and languages, and reduce the labor cost of knowledge accumulation in the real-world product dialogue platform.
translated by 谷歌翻译
Structure-guided image completion aims to inpaint a local region of an image according to an input guidance map from users. While such a task enables many practical applications for interactive editing, existing methods often struggle to hallucinate realistic object instances in complex natural scenes. Such a limitation is partially due to the lack of semantic-level constraints inside the hole region as well as the lack of a mechanism to enforce realistic object generation. In this work, we propose a learning paradigm that consists of semantic discriminators and object-level discriminators for improving the generation of complex semantics and objects. Specifically, the semantic discriminators leverage pretrained visual features to improve the realism of the generated visual concepts. Moreover, the object-level discriminators take aligned instances as inputs to enforce the realism of individual objects. Our proposed scheme significantly improves the generation quality and achieves state-of-the-art results on various tasks, including segmentation-guided completion, edge-guided manipulation and panoptically-guided manipulation on Places2 datasets. Furthermore, our trained model is flexible and can support multiple editing use cases, such as object insertion, replacement, removal and standard inpainting. In particular, our trained model combined with a novel automatic image completion pipeline achieves state-of-the-art results on the standard inpainting task.
translated by 谷歌翻译
Earthquakes have a deep impact on wide areas, and emergency rescue operations may benefit from social media information about the scope and extent of the disaster. Therefore, this work presents a text miningbased approach to collect and analyze social media data for early earthquake impact analysis. First, disasterrelated microblogs are collected from the Sina microblog based on crawler technology. Then, after data cleaning a series of analyses are conducted including (1) the hot words analysis, (2) the trend of the number of microblogs, (3) the trend of public opinion sentiment, and (4) a keyword and rule-based text classification for earthquake impact analysis. Finally, two recent earthquakes with the same magnitude and focal depth in China are analyzed to compare their impacts. The results show that the public opinion trend analysis and the trend of public opinion sentiment can estimate the earthquake's social impact at an early stage, which will be helpful to decision-making and rescue management.
translated by 谷歌翻译
Automated rule checking (ARC), which is expected to promote the efficiency of the compliance checking process in the architecture, engineering, and construction (AEC) industry, is gaining increasing attention. Throwing light on the ARC application hotspots and forecasting its trends are useful to the related research and drive innovations. Therefore, this study takes the patents from the database of the Derwent Innovations Index database (DII) and China national knowledge infrastructure (CNKI) as data sources and then carried out a three-step analysis including (1) quantitative characteristics (i.e., annual distribution analysis) of patents, (2) identification of ARC topics using a latent Dirichlet allocation (LDA) and, (3) SNA-based co-occurrence analysis of ARC topics. The results show that the research hotspots and trends of Chinese and English patents are different. The contributions of this study have three aspects: (1) an approach to a comprehensive analysis of patents by integrating multiple text mining methods (i.e., SNA and LDA) is introduced ; (2) the application hotspots and development trends of ARC are reviewed based on patent analysis; and (3) a signpost for technological development and innovation of ARC is provided.
translated by 谷歌翻译